Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
نویسندگان
چکیده
Sea-ice ridges constitute a large fraction of the ice volume in Arctic Ocean, yet we know little about evolution these masses. Here examine thermal and morphological an first-year sea-ice ridge, from its formation to advanced melt. Initially mean keel depth was 5.6 m sail height 0.7 m. The initial rubble macroporosity (fraction seawater filled voids) estimated at 29% drilling 43%–46% buoy temperature. From January until mid-April, ridge consolidated slowly by heat loss atmosphere total layer growth during this phase mid-April mid-June, there sudden increase consolidation rate despite no conductive flux. We surmise change related decreased due transport snow-slush via adjacent open leads. In period, thickness increased 2.1 At peak melt June–July suggest that refreezing surface snow meltwater (the latter only 15% consolidation). used morphology parameters calculate hydrostatic equilibrium obtained more accurate estimate actual keel, correcting 2.2 2.8 for average consolidation. This approach also allowed us 0.3 m, June–July, accompanied decrease draft 0.9 An mass balance indicated which rapid mode April June. By resulted drastic interior while flanks had or macroporosity. These results are important understanding role keels as sources sinks sanctuary ice-associated organisms pack ice.
منابع مشابه
Arctic sea ice concentration observed with SMOS during summer
The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric...
متن کاملObserved Arctic sea-ice loss directly follows anthropogenic CO2 emission.
Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Because climate-model simulations of the sea-ice loss differ substantially, we used a robust linear relationship between monthly-mean September sea-ice area and cumulative carbon dioxide (CO2) emissions to infer the future evolution of Arctic summer sea ice directly from the observational re...
متن کاملObserving and Modeling the Surface Scattering Layer of First-Year Arctic Sea Ice
The long-term goal of this work is to increase the quantitative understanding of the partitioning of incident solar radiation by sea ice. The partitioning of shortwave radiation into components backscattered to the atmosphere, absorbed by the ice, and transmitted to the ocean is central to icealbedo feedback, the mean annual cycle of ice thickness, mechanical and biological properties of the ic...
متن کاملArctic sea ice reconstructions
Can we reconstruct Arctic sea ice back to 1900 with a hybrid approach? S. Brönnimann, T. Lehmann, T. Griesser, T. Ewen, A. N. Grant, and R. Bleisch Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland Received: 14 July 2008 – Accepted: 14 July 2008 – Published: 19 August 2008 Correspondence to: S. Brönnimann ([email protected]) Published by Copernicus Publications on beh...
متن کاملModeling the anisotropic brine microstructure in first-year Arctic sea ice
[1] Cross-borehole DC resistivity tomography has recently been used to monitor the temporal variation of the anisotropic bulk electrical resistivity of first-year Arctic sea ice during the period of spring warming. These measurements cannot be explained by standard models of sea ice microstructure which treat the brine phase as isolated ellipsoidal pores. A simple structural model which does sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Elementa
سال: 2023
ISSN: ['2325-1026']
DOI: https://doi.org/10.1525/elementa.2023.00008